Hyperspectral Image Compression Using Three-Dimensional Wavelet Coding: A Lossy-to-Lossless Solution†
نویسندگان
چکیده
We propose an embedded, block-based, image wavelet transform coding algorithm of low complexity. The embedded coding of Set Partitioned Embedded bloCK (SPECK) algorithm is modified and extended to three dimensions. The resultant algorithm, three-Dimensional Set Partitioned Embedded bloCK (3D-SPECK), efficiently encodes 3D volumetric image data by exploiting the dependencies in all dimensions. 3D-SPECK generates embedded bit stream and therefore provides progressive transmission. We describe the use of this coding algorithm in two implementations, including integer wavelet transform as well as floating point wavelet transform, where the former one enables lossy and lossless decompression from the same bit stream, and the latter one achieves better performance in lossy compression. Wavelet packet structure and coefficient scaling are used to make the integer filter transform approximately unitary. The structure of hyperspectral images reveals spectral responses that would seem ideal candidate for compression by 3D-SPECK. We demonstrate that 3D-SPECK, a wavelet domain compression algorithm, can preserve spectral profiles well. Compared with the lossless version of the benchmark JPEG2000 (multi-component), the 3D-SPECK lossless algorithm produces average of 3.0% decrease in compressed file size for Airborne Visible Infrared Imaging Spectrometer images, the typical hyperspectral imagery. We also conduct comparisons of the lossy implementation with other the state-of-the-art algorithms such as three-Dimensional Set Partitioning In Hierarchical Trees (3D-SPIHT) and JPEG2000. We conclude that this algorithm, in addition to being very flexible, retains all the desirable features of these algorithms and is highly competitive to 3D-SPIHT and better than JPEG2000 in compression efficiency.
منابع مشابه
Hyperspectral Image Lossy-to-Lossless Compression Using 3D SPEZBC Algorithm Based on KLT and Wavelet Transform
In this paper, we propose a hyperspectral image lossy-tolossless compression using three-dimensional Embedded ZeroBlock Coding (3D EZBC) algorithm based on Karhunen-Loève transform (KLT) and wavelet transform (WT). Furthermore, an improved Hao’s matrix factorization method for integer KLT is also presented, which can reduce not only the computational complexity but also the memory requirements....
متن کاملLossy-to-Lossless Compression of Hyperspectral Image Using the 3D Set Partitioned Embedded ZeroBlock Coding Algorithm
In this paper, we propose a three-dimensional Set Partitioned Embedded ZeroBlock Coding (3D SPEZBC) lossy-to-lossless compression algorithm for hyperspectral image which is an improved three-dimensional Embedded ZeroBlock Coding (3D EZBC) algorithm. The algorithm adopts the 3D integer wavelet packet transform proposed by Xiong et al. to decorrelate, the set-based partitioning zeroblock coding t...
متن کاملThree-Dimensional Wavelet-Based Compression of Hyperspectral Images
Hyperspectral images may be treated as a three-dimensional data set for the purposes of compression. Here we present some compression techniques based on a three-dimensional wavelet transform that produce compressed bit streams with many useful properties. These properties are progressive quality encoding and decoding, progressive lossyto-lossless encoding, and progressive resolution decoding. ...
متن کاملDistributed Compression of Hyperspectral Imagery
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 Hyperspectral Imagery Compression: State of the Art. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 Outline of This Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....
متن کاملAn Improved EZW Hyperspectral Image Compression
The paper describes an efficient lossy and lossless three dimensional (3D) image compression of hyperspectral images. The method adopts the 3D spatial-spectral hybrid transform and the proposed transform-based coder. The hybrid transforms are that Karhunen-Loève Transform (KLT) which decorrelates spectral data of a hyperspectral image, and the integer Discrete Wavelet Transform (DWT) which is a...
متن کامل